

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 1 -

Executable UML

Stephen J. Mellor

Executable UML is here. While it is possible today to add code to UML diagrams and
then execute them, in so doing you must make a series of decisions about implementation that
may not be correct, appropriate, or even knowable. Executable UML models systems at a higher
level of abstraction, thus avoiding the costs involved in a premature design.

Executable UML offers the benefits of early verification through simulation, the ability to
translate the UML model directly into efficient code, and the ability to delay implementation
decisions until the last minute.

This paper describes the components of executable UML and how they fit together.
Special attention will be paid to translating an executable UML model into code and what
decisions need to be made and what time during the process.

1. Unified Modeling Language

“The Unified Modeling Language is a language for specifying, constructing, visualizing, and
documenting the artifacts of a software-intensive system” or so says the UML Summary [1].
UML, until quite recently, has not attempted to be executable. In this paper, we examine what is
being done to make the UML executable, how execution fits into the UML, various forms of
execution that may be based on an executable UML, and what this all means for real-time and
embedded systems engineers.

So what does the UML do, if it doesn’t execute? It addresses the following development tasks:

• Requirement’s gathering and analysis (i.e. the external usage of the system)
• System modeling (how a particular domain operates in terms of data, control and

algorithm),
• System deployment (allocation of system functionality to processors, tasks and classes)

Of these, requirement’s gathering is not an automatable or executable task—it is a human and
creative one that cannot be automated. System modeling, on the other hand, can be made to have
a semantics for execution. (System deployment describes allocations of system functionality.)

Because of the broad range of tasks taken on by the UML, the UML has many diagramming
notations. Here are a few:

Use Case Diagram: system stimulus-response model (used in requirements gathering)
Static Structure Diagram: package, class, and object diagrams (used in system modeling)
State Diagram: control for dynamic behavior (used in system modeling)
Activity Diagram: workflow of activities (used in system modeling)
Sequence Diagram: dynamic interactions with time (used in system modeling)
Collaboration Diagram: dynamic interactions without time (used in system modeling)
Component Diagram: software components (used in system deployment)
Deployment Diagram: allocation of components to processing elements (used in system
deployment)

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 2 -

Some of these diagrams are just views of other diagrams. For example, a collaboration diagram
showing asynchronous communication can be built from the state charts and the signals they send
and receive. Consequently, we may classify some diagrams as essential in that: they capture the
complete scope and behavior of the system and support model translation to code; and some as
derived: diagrams that show additional views of the essential models. Auxiliary diagrams can be
used to augment the construction of the essential models.
The careful reader will have noted that these diagrams are just notation, not semantics. To be
more precise, the UML defines the static semantics of the notation, but not the executable, or
dynamic semantics. Moreover, we have used “model” for the underlying abstractions and
“diagram” for a representation of those abstractions.

As a result, a UML diagram cannot be executed. It cannot be verified and 100% code generation
cannot be achieved.

2. Execution

Model-based execution is the logical next step. In the 1960’s we learned how to compile
assembly language into machine language. Twenty years later, we learned how to do the same
for high-level languages such as C. Now it is time to compile models so that developers work at
a more productive level of abstraction, and automate tedious manual tasks. This allows the
developer to focus on solving application and product problems, not on implementation details.

Model-based execution relies on the ability to compile or interpret the model. A model compiler
can then focus on uniformly solving implementation problems.

Execution is a form of code generation. Bell, in [2], identifies three forms of code generation.
The first is structural code generation, which uses the diagram to generate class headers and the
like, but the user has to fill in the code for the functions. There are therefore two sources for the
code, the code generated from the diagrams (usually just class headers/structs, include files and
the like), and hand-written code. Therein lies the problem: the two sources must be kept in synch
somehow. If you change the headers as a result of writing detailed code, it is impossible to
regenerate the code from the diagram.

Behavioral code generation solves the “unsynchronized code” problem by adding code directly to
the diagram. Tools that support behavioral code generation usually generate code from a state
chart, rather than just allowing the developer to specify the code for the functions. For behavioral
code generation we therefore need to have an agreed execution semantics for the state chart.
Because behavioral code generation links the logic to the diagram, it enables early error detection
through verification, and reuse of the model compiler. This is a Good Thing, and it is fair to call
this form of code generation “executable.” But there is a one-to-one correspondence between
elements on the state chart and the generated code. Although it is possible to add code to UML
diagrams and then execute them, in so doing you must make a series of decisions about
implementation that may not be correct, appropriate, or even knowable. The code generation
system is closed, and the performance is determined by the model compiler. If the performance is
inadequate, the developer generally has to distort the application model.

In translative code generation the model compiler is open. This approach relies on subject matter
separation—the complete separation of the application model from the model compiler. The
model compiler comprises a set of reusable execution engine components, such as inter-task
communication and list libraries, and a set of rules that direct the generation. The rules are

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 3 -

completely open, so they may be used to generate C, C++, Ada, Forth, even VHDL. We discuss
the details of the model compiler and rules below in Section 6.

3. The Executable Model

The executable model is based on a limited subset of UML assembled in a particular way so that
the diagrams have meaning. For example, in UML one may build a statechart for a class, an
object, a method, a use case, a component, a package—just about anything. While the execution
semantics of the state chart are defined in isolation, this leaves open the question of how the
various elements relate to one another.

Executable UML comprises only three diagrams, the class diagram, which outlines the conceptual
entities in the domain, a state chart for each class that models the lifecycle of each object, and An
activity for each state—the set of actions that establish the state.

The classes must be abstracted based on both similar behavior and characteristics. This
requirement allows a state chart to be built for each class that applies uniformly to each object,
avoiding logic to determine what type of object each action is executing on.

The state chart captures the lifecycle of each object. There is one state chart per class because the
behavior of each object is exactly the same. In some cases, there is no need to build a state chart
because the only operations are synchronous data access under the control of other objects. For
other classes that manage contention, we build a single state chart for the class as a whole.
Conceptually, then, a class may have no state charts, or one chart that applies uniformly to each
object, and an (optional) other that apples to the class as a whole.

An activity is a collection of actions that is executed on entry to a state. An activity is almost the
same as an action, except that an activity allows for parameters, while actions rely on data flows.
Specifically, when an event is received by a state chart, the event may carry data other than the
target object, such as the phone numbers involved in a call. This “supplemental data” is made
available to all actions in the activity on data flows. Activities on state charts do not have return
parameters. All data must (logically) be stored as attributes of objects (a model compiler could
optimize this), before the activity completes.

An executable model operates on data about objects. Each class defines attributes for objects,
and each attribute may have an initial value for each object. When the model executes, each
object has its own state, and each object executes concurrently and asynchronously with respect
to all others. Each state chart instance, then, is in its own (just one) state, either executing an
activity to completion, or not. The actions inside activities may read data through (logically)
encapsulated functions of other classes at the same time as the target object is executing an
activity. It is the modeler’s responsibility to avoid data access conflict by synchronizing the
behavior of the various objects, if required, using a state chart.

The state charts recognize events. Each event may be a signal sent from another object, from the
outside, or it can be the result of a “deferred event” that signals expiry of a timer or of some
absolute time.

Thus, an executable UML “program” comprises a collection of concurrently executing state
machines communicating by sending signals. This highly concurrent model can re reorganized to

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 4 -

be fully synchronous or distributed without changing its behavior. Indeed, it is possible to
reorganize the model so that some states are executed periodically in a separate task, and the
attributes of a single object are stored in multiple processors. So long as the behavior is the same.

4. The Action Model
4.1 Requirements

Until recently, the UML had an under-developed model of actions. The model comprised seven
actions, including create an instance, send a signal, destroy an instance, terminate an instance
(don’t ask what the difference is), and my personal favorite, “uninterpreted string.”

In 1998, the Object Management Group developed a Request for Proposal for a precise Action
Semantics [3] that laid out the requirements. One of these key requirements is that the semantics
should require the definition only of required sequencing, and should not over-constrain
sequence. Specifically, this means that the sequential nature of today’s third-generation
programming languages is often over-constrained. Consider for example two statements a = b;
and x = y; In a third=generation program, there is a sequence for these two statements, so that
a = b; must execute before x = y; logically, there is no reason why one should execute before
the other.

On the other hand, in the fragment x = 2 * a; and b = x * x, its meaning is different
depending on which statement executes first. If x = 2 * a should execute before b = x *
x, the fragment will yield a value for b of 4a2. In this case, x is just a convenience, and could
be replaced with its value 2a. Alternatively, one could think of x as being a name for a data flow
between the two statements. Of course, the meaning is completely different if executed in the
other order. The goal of the requirement is to make the sequencing explicit so that some model
compilers can optimize the execution of the statements, possibly even executing one of them on
another processor.

Second, the action model should separate functional computation from data access. The intent of
this requirement is to allow the statement of a function to be reusable regardless of where the data
came from. Today we often express functions and data access code together. For example, if we
track the time of each of the last ten calls on a cell phone, as well as the total of the ten, it is not
uncommon to loop through the last ten calls, adding each one to the sum. This approach is
efficient, but it relies on knowing how those call times are stored in some data structure. If we
change the storage scheme, it has the unhappy effect of invalidating the algorithm. To avoid this
problem, the action semantics requires that the data access is specified first, then the data values
are presented as if they were just n elements to a function that sums. This allows a model
compiler to optimize the solution based on the selection of the data structure. It also allows a
model compiler to select a data structure to optimize the execution of the algorithms.

Third, the action model should manipulate only UML elements. This means two things. First the
action model must know about classes, attributes, and other UML concepts. We can think of
these elements as being ‘pre-declared.’ Second, only UML elements are permitted. No pointers,
no arrays, no magic, except as explicitly modeled in UML. This has the effect of restricting the
generality and so making a specification language.

The action model is therefore software-platform independent. It makes no assumptions about the
organization of the software, only of the specification.

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 5 -

The action model does not require the specification of a notation. Any action language that
conforms to the semantics is acceptable. This allows terse notations, verbose notations and even
graphical ones.

4.2 The Result

In mid-2001, a consortium of companies made a proposal that satisfies the requirements of the
RFP. This was accepted later that year, thus endowing UML with a semantics for actions. In the
remainder of this section, we describe a few salient features.

In a distributed systems environment, time is relative due to transmission delay. The UML action
model defines its semantics by assuming the only guarantee is the sequencing of signals between
sender and receiver pairs. This is especially important for many real-time systems, even small,
embedded systems that need to coordinate hardware and software. These systems cannot
possibly assume a single synchronized sequential flow of control, for the simple reason that there
isn’t one.

Actions can execute as operations in classes, on entry to or exit from a state, and on a transition.
Each such grouping is called an activity. Each activity runs to completion, which means that,
from the point of view of other objects, each activity finishes before another can be processed.
These rules are still quite loose (in the action semantics), but they allow for the concurrent
execution of synchronous invocations on an object at the same time that a state chart executes.
The state chart semantics specify execution of the activity on exit from a state, then the transition
activity, then the activity on entry to a state for flat state charts. For hierarchical state charts the
rules are more complex, and I personally remain unconvinced that they are fully defined in a
standard manner. Certainly, I can’t retain the rules long enough to work it out.

The foundation for actions is a data flow model close to that proposed in Shlaer and Mellor [4].
Shlaer-Mellor allows for data flows comprising multiple data elements, while the action
semantics allow for results to be generated on pins connected by data/object flows.
Consequently, there can be several flows between the same two actions.

A value on an output pin can only be written once, but read many times, which is just another
way of saying that the action semantics rely on data flow. Re-consider for example the code
fragment from above: x = 2 * a; b = x * x. As we indicated earlier, the assignment to x is
not necessary. Were we to replace x with x’, the meaning of the fragment would be exactly the
same. We can always (logically) replace a data flow with another variable, thus leading to the
original statement that we can write once, but read many times. This property corresponds to the
“Static Single Assignment” property in programming language theory.

Control flows impose sequence on actions. They can be combined with data flows.

Actions may be composed (recursively) for control, for conditionals, for loops, or for any other
arbitrary reason.

All data access is modeled explicitly using actions. This facilitates re-organization of actions in
an implementation. (See the requirement to separate data access from functional computation
above.)

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 6 -

The submission does not define primitives, such as addition, multiplication, string concatenation,
Bessel functions, and the like. There are actions to invoke these primitive actions and other
actions that are not modeled further.

Some actions act on collections. A collection is a fancy UML term for either a set, in which each
element is required to be distinct, or a bag, in which there is no such requirement. Four types of
action are defined on collections. Filter takes a collection of elements and a test on some value
to produce a subset of elements, only those for which the test is true. For example,

ReadAll(Switch.Circuit)| Filter(Circuit.Status != #Busy)
reads all the circuits connected to a switch, “pipes” the result to a filter that passes only those
circuits for which the status is not busy. (Syntax is not specified in the standard.)

5. The Repository

To capture semantics, as distinct from notation, the meaning of the model, as distinct to the
diagrams, must be captured in a repository of some sort. The logical structure of the repository
mirrors the semantic rules described in the sections above, including the semantics of actions.

The executable UML metamodel is a model of executable UML using UML. It has classes such
as Class, Attribute, Event, Signal, State, Action, CreateAction, ReadAction—all of the concepts
we have discussed to define UML in English.

When we draw a class such as Batch in a developer model, this creates, presumably using some
model building tool, an instance of the class Class, with data describing the class so created, such
as a Name (“Batch”), a description, and the like. (It could also have graphical information that
describes the location of the box and so on, but that is not of concern to us in the semantics.)
Similarly, when we create an attribute amountOfBatch of the Batch class, this creates an instance
of the class Attribute with name (amountOfBatch), the class it describes (a reference to Batch), a
type (amount), and so on.

The precise structure of the repository is important to the developers of model building tools and
if you, or a model compiler builder, need to traverse the repository to produce code.

6. Model Compilers

A model compiler comprises two main components, an execution engine and a set of rules. A
model compiler relies on the existence of some repository and some language that can traverse an
arbitrary repository and produce text. The rule language is processed by a “generator.”

An execution engine is a specific set of reusable components that, when taken together, are
capable of executing an arbitrary executable UML model. The execution engine will therefore
contain ways of storing instances in some form, possibly as objects, but not necessarily; some
way of sending signals, some way of recognizing event, some way of reading an attribute, and so
forth. The selection of the elements in the execution engine determine the system properties,
such as concurrency and sequentialization, multi-processing and multi-tasking, persistence, data
organization and data structure choices. These choices, together with the pattern of usages in the
application, determine the performance of the system.

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 7 -

The second part of the model compiler is a set of rules. As an example, the rule below generates
code for private data members of a class by selecting all related attributes and iterating over them.
All lines beginning with a period (‘.’) are commands to the generator, which traverses a
repository containing the executable model and performs text substitutions.

.Function PrivateDataMember(class Class)
.select many PrivateDataMember from instances of Attribute related to Class
.for each PrivateDataMember
${PrivateDataMember.Type} ${ PrivateDataMember.Name};
.endfor

${PrivateDataMember.Type} recovers the type of the attribute, and substitutes it on the
output stream. Similarly, the fragment ${ PrivateDataMember.Name} substitutes the name
of the attribute. Finally, the lone ; is just text, copied without change onto the output stream.

For a more complete example, consider:

.select many stateS related to instances of

class->[R13]StateChart ->[R14]State
where (isFinal == False);

public:
 enum states_e
 { NO_STATE = 0 ,
.for each state in stateS .if (not last stateS)
 ${state.Name } ,
 .else
 NUM_STATES = ${state.Name}
 .endif;
.endfor;
};
which produces:

public:
 enum states_e
 { NO_STATE = 0 ,
 Ready ,
 Executing ,
 NUM_STATES = Complete
 };
In the rule, we used italics for instance references, which are like variables that refer to instances
in the repository; underlining to refer to names of classes and attributes in the repository; and
capitalization to distinguish between collections of instances vs. individual ones.

You may wonder what the code is that is produced is for. It is an enumeration states with a
variable num_states automatically set to be the count for the number of elements in the
enumeration. This enumeration is used to dimension an array that contains the pointers to the
activity to be executed. You may not like this code. Cool: to change it all you have to do is
modify the rule and regenerate. Every single place where this code was written will then be
changed.

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 8 -

While the “result” is only about half the size of the rule, the rule can generate any number of
these enumerations., all in the same way, all conforming to your coding standards, all equally
right—or wrong.

7. Model Driven Architecture

Executable UML only carries us so far. We need also be able to interchange the models between
tools. XML is a data interchange tool that relies on data type definitions (DTDs) to define the
semantics of the interchanged data. This definition, for the UML in XML, is called XMI.
However, XMI is still insufficient because it allows any syntactically correct UML model to be
interchanged, and what we need is to be able to interchange standard semantics for execution.

Executable UML enables a market in model compilers, because a standard interchange
mechanism for standard semantics means that any vendor who builds a model compiler will have
access to all executable UML models.
Each model compiler can then target a specific platform. For example, one model compiler can
target small embedded systems generating highly optimized C straight onto the silicon without an
operating system, while another can generate multi-tasking C++ with persistence capabilities.
Still others can generate VHDL from executable UML models.

8. What To Take Away

Executable UML models systems at a higher level of abstraction, thus avoiding the costs involved
in making premature design decisions. This higher level of abstraction has to have rules, rules
that make the models simple and regular, and thus amenable to compilation. There is no need to
make executable UML have notations for every single packaging, every single, design construct,
and every single way of describing behavior. Rather, executable UML contains only what is
required for a specification language.

The basic structure of an executable UML model is that each class has a state chart, and activities
containing actions hang off a limited number of places in a state chart. The action semantics are a
part of UML (or should be by the time you read this!)

A model compiler is a executable UML compiler comprising an execution engine and a set of
rules. The rules read the repository to produce code. Model compilers, like programming
language compilers, can be bought as object code, or they may be bought as source, offering the
modifiability of the rules to make the generated code more efficient.

To make a market in model compilers, there has to be interchangeability of models, then every
model compiler will be able to compile every executable UML model. It also enables other tools:
tolls that check for reachability or decideability, tools that can transform models by, for example,
combining state machines or breaking them apart, and so on. This will, if all goes well,
fundamentally change how we build software.

Finally, you have to see a complete example of an Executable UML model, Leon Starr’s
excellent book Executable UML [6]

Copyright 2004-2013 © Stephen J Mellor Version 1.3 - 9 -

9. References

[1] The UML Summary. See www.omg.org document ad/97-08-04 and friends
[2] Rodney Bell, Code Generation from Object Models, Embedded Systems Programming,

March 1998.
[3] Action Semantics RFP, See www.omg.org, document ad/98-11-01
 [4] Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in States,

Prentice Hall, 1992
[5] Action Semantics Submission. See www.omg.org, document ad/2001-08-04[6] Leon

Starr, Executable UML, Model Integration, LLC.; 2 CDs incl., ISBN: 0970804407

